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Amination reactions of saturated C-H bonds hold great
potential as methods for the synthesis of amines and amine
derivatives.1,2 We have recently delineated one such process that
makes possible the conversion of 1° carbamates to oxazolidin-
2-ones using dinuclear Rh carboxylate catalysis.2 Further explora-
tions of this chemistry have guided us to sulfamate esters1 (Figure
1). This uniquely reactive class of compounds affords six-
membered ring insertion products2 through exclusiveγ-C-H
bond amination.3 Such findings contrast distinctly the reactions
of carbamates and serve to define a new, exceptionally versatile
strategy for the preparation of 1,3-amino alcohols and related
â-amino acids.4 Additionally, we have demonstrated that these
seldom described oxathiazinane heterocycles2 can be converted
following N-carbamoylation into reactive alkylating agents.
Nucleophilic displacement reactions of these electrophiles afford
1,3-difunctionalized compounds with marked efficiency. The
chemistry described herein thus offers powerful methodology for
the construction of myriad amine-derived materials through
selective, intramolecular C-H oxidation.

Reported protocols for the synthesis of sulfamate esters
typically employ sulfamoyl chloride, ClSO2NH2, a convenient
reagent for preparative scale use made easily from inexpensive
ClSO2NCO and formic acid.5 Condensation of ClSO2NH2 with
most 1° and 2° alcohols (pyridine, CH2Cl2) furnishes the target
sulfamates in 65-75% yield.6 These substrates react rapidly (<2
h) at 40°C with PhI(OAc)2, MgO, and 2 mol % Rh2(OAc)4 to
afford the corresponding six-membered ring insertion products

through selectiveγ-C-H insertion (Table 1).7,8 The strong bias
for oxathiazinane formation is presumably accounted for by the
elongated S-O and S-N bonds (1.58 Å) and the obtuse N-S-O
angle (103°) of the sulfamate, which match closely the metrical
parameters of the heterocycle.9 Nonetheless, it is possible to
generate efficiently the five-membered sulfamidate in systems for
which no alternative cyclization pathway is available (entry 9).

C-H amination under Rh-catalysis has general applicability
with a range of structurally disparate starting materials. High
product yields are obtained for sulfamates possessing 3° and
benzylic C-H centers nearly without exception. Although
3° C-H bonds react in preference to 2° -CH2 units (entry 1),
amination of unactivated-CH2 groups is catalyzed effectively.
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Table 1. Oxidative Cyclization of Sulfamate Estersa

a (a) Catalyst: A ) Rh2(OAc)4, B ) Rh2(oct)4. (b) Reactions
conducted for∼2 h with 2 mol % catalyst, 1.1 equiv PhI(OAc)2, and
2.3 equiv MgO in CH2Cl2 at 40°C; in two cases (entries 5 and 8), 5
mol % catalyst loading was employed. (c) Exclusive product as
determined by1H NMR of the unpurified reaction mixture. (d)
Exclusive product as determined by1H NMR of unpurified reaction
mixture; stereochemistry established by nOe experiments. (e) 13:1 syn/
anti by 1H NMR. (f) 4:1 syn/anti by1H NMR. (g) 8:1 cis/trans by1H
NMR. (h) Product isolated by crystallization; conversion is>97% from
1H NMR of the unpurified reaction mixture.

Figure 1. Rh-catalyzed oxidative cyclization of sulfamate esters.
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Notably, good to excellent levels of 1,3-diastereoselective induc-
tion are recorded for substrates derived from 2° alcohols having
prochiral-CH2 centers (entries 2, 4, 5, 7).10 Preference for the
1,3-synisomer ranges from 4 to>20:1, as evidenced in entries
2, 4, and 5, and is consistent with the cyclization event proceeding
through a chairlike transition state.11 1,3-Asymmetric induction
in systems such as these can be exploited for the purpose of
establishing stereogenic amine centers from remote alcohol
groups. Importantly, reactions with chiral substrate probes (entry
3) confirm that sulfamate insertion is stereospecific.2,12Thus, C-H
amination is suited ideally for theenantiospecificpreparation of
quaternary stereocenters given the challenges associated with the
asymmetric synthesis of such functional units.13

The structural homology between oxathiazinanes2, cyclic
sulfates, and sulfamidates suggested to us that the former
compounds could serve as useful electrophiles.14 To our knowl-
edge, only two prior reports have demonstrated that nucleophilic
ring-opening of these heterocycles is indeed possible. In both
examples, however, vigorous reaction conditions were employed
(e.g., NaCN, DMF, 130°C).15 We reasoned that carbamoylation
of the-NH moiety might improve the electrophilic reactivity of
2. Accordingly,N-CBz oxathiazinanes3 and5 were synthesized
using CBzCl and NaOtBu (80-90%). Ring-opening of these
compounds occurs smoothly with 1° and 2° amines, thiolates,
AcO-, and N3

- nucleophiles (Figure 2).16 At slightly elevated
temperatures (45°C), even weakly reactive species such as water,
1° and 2° alcohols add to3 and 5.17 The remarkably facile
displacement reactions ofN-CBz oxathiazinanes vis-a`-vis 2 raise
considerably the utility of these heterocycles for synthesis.

The effectiveness of the hydrolytic ring-opening ofN-CBz
oxathiazinane3 in aqueous CH3CN has enabled the development

of a single-step method for the conversion of3 to the corre-
spondingN-CBz-â-amino acid8 (eq 1).4c Addition of H2O to 3
followed by treatment of the resulting alcohol7 with catalytic
TEMPO, NaOCl, and NaClO2 (phosphate buffer, pH≈ 3-4)
produces the target compound,N-CBz-â-phenylalanine8, in 80%
yield without recourse to intermediate purification steps.18 By
conjoining sulfamate ester cyclization with this oxathiazinane ring
opening-oxidation protocol, we have further advanced a concise,
asymmetric synthesis of (R)-N-CBz-â-isoleucine13 (Scheme 1).19

Synthesis of13 (1.8 g) is thus accomplished in four straightfor-
ward and readily scalable steps from (S)-3-methyl-1-pentanol9.20

The multigram preparation of13 illustrates the salient potential
of our C-H insertion reaction for the efficient assembly of chiral
â-amino acids and optically pure quaternary centers.21

Intramolecular C-H amination using commercial Rh-catalysts,
PhI(OAc)2, and MgO offers a practical solution for the controlled
oxidation of saturated C-H bonds. Reactions of sulfamates with
2 mol % Rh2(OAc)4, PhI(OAc)2, and MgO yield selectively six-
membered ring oxathiazinanes. These novel heterocycles are
shown to have exceptional value as precursors for 1,3-amino
alcohols,â-amino acids, and numerous other 1,3-difunctionalized
amine derivatives. In addition, asymmetric quaternary centers are
constructed with absolute stereocontrol. As such, these new
chemistries should find broad application in synthesis.
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Figure 2. Representative oxathiazinane ring-opening reactions.

Scheme 1a

a (a) ClSO2NH2, C5H5N, CH2Cl2, 70%; (b) 2 mol % Rh2(OAc)4,
PhI(OAc)2, MgO, CH2Cl2, 91%; (c) CBzCl, NaOtBu, 75%; (d) aq CH3CN,
then cat. TEMPO, NaOCl, NaClO2, 81%.

6936 J. Am. Chem. Soc., Vol. 123, No. 28, 2001 Communications to the Editor


